A dimensional property of Cartesian product
نویسندگان
چکیده
منابع مشابه
The reliability Wiener number of cartesian product graphs
Reliability Wiener number is a modification of the original Wiener number in which probabilities are assigned to edges yielding a natural model in which there are some (or all) bonds in the molecule that are not static. Various probabilities naturally allow modelling different types of chemical bonds because chemical bonds are of different types and it is well-known that under certain condition...
متن کاملCartesian Product of Functions
For simplicity we follow the rules: x, y, y1, y2, z, a will be arbitrary, f , g, h, h′, f1, f2 will denote functions, i will denote a natural number, X, Y , Z, V1, V2 will denote sets, P will denote a permutation of X, D, D1, D2, D3 will denote non-empty sets, d1 will denote an element of D1, d2 will denote an element of D2, and d3 will denote an element of D3. We now state a number of proposit...
متن کاملSecret Sharing Based On Cartesian product Of Graphs
The purpose of this paper is to study the information ratio of perfect secret sharing of product of some special families of graphs. We seek to prove that the information ratio of prism graphs $Y_{n}$ are equal to $frac{7}{4}$ for any $ngeq 5$, and we will gave a partial answer to a question of Csirmaz cite{CL}. We will also study the information ratio of two other families $C_{m}times C_{n}$ a...
متن کاملThe determining number of a Cartesian product
A set S of vertices is a determining set for a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G, denoted Det(G), is the size of a smallest determining set. This paper begins by proving that if G = G1 1 2 · · ·2 Gkm m is the prime factor decomposition of a connected graph then Det(G) = max{Det(Gi i )}. It then provides upper and lower boun...
متن کاملConnectivity of Cartesian product graphs
Use vi , i , i , i to denote order, connectivity, edge-connectivity and minimum degree of a graphGi for i=1, 2, respectively. For the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are (G1×G2) 1+ 2 and (G1×G2) 1+ 2. This paper improves these results by proving that (G1×G2) min{ 1+ 2, 2+ 1} and (G1×G2)= min{ 1+ 2, 1v2, 2v1} ifG1 andG2 are conne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 2013
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm220-3-7